y

Security:
Authorization in Mac OS X

Session 110

y

Security:
Authorization in Mac OS X

Craig Keithley
Security and Cryptography Technology Evangelist

Introduction

* Discuss the recommended usage of the
Authorization Services

* Make Mac OS X more secure and configurable
by adopting this API

y

Security:
Authorization in Mac OS X

Michael Brouwer
Technical Lead Data Security Group

What You Will Learn

* Learn to build applications that need
privileged system access

* Learn to build installers that can install
privileged application components

* Learn ways to access privileged system calls
without running your entire application with
root privileges

What This Session Will Cover

* Understanding Authorization
e What it does and does not do
* Authorization Services

* Examples of how to not use
Authorization Services

* Examples of how to use
Authorization Services

Understanding Authorization

* Understanding Authorization vs. Authentication

* Why use Authorization Services

o Better t|

han conventional ad-hoc methods

for performing Authorization

» Make an explicit decision and allow for fine
grain control of who can do what

Benetits of Centralized
Authorization

* Easier to audit
* Configurable/securable
* Flexible

* Explicit vs. ad hoc

Recommended Architecture

SecurityServer

Check Rights
Obtain
of Passed in
Authorization / \Authorlzatlon

Tool

Application
Pass
Externalized
Authorization

What It Does

* Password based only
* Using Directory Services as of Jaguar

* Answers the “Do I have the right to do
this” question

* Provides user interaction when necessary

What It Does Not Do

* Answers the “Do I have the right to do this”
question, but does not grant access

* Mac OS X is not a capability-based
operating system

Case Study

* Emptying the trash when it contains directories
that are not writable by the current user

Authorization Services

* Naming of rights
* Application communication
* Recommended usage of Authorization Services

* Temporary solution for third-party installers

Naming of Rights

* Rights are in a hierarchical namespace

*We define domain, but not individual rights
since each application has different needs

* Example right names:
. system.login.console
. system.login.pam
. system.device.dvd.setregion.change
- system.device.dvd.setregion.initial
- system.preferences
. system.privilege.admin

Application Communication

* Split off security sensitive operations into small
well understood tools

* Passing Authorization tokens between processes

Recommended Usage of
Authorization API (App)

* Create an AuthorizationRef
* Optional
« Use CopyRights to figure out what is currently allowed

» When the user wishes to make changes, pertorm a
pre-authorization using CopyRights and ask for the
rights you need

* Pass the AuthorizationRef to a privileged tool/
daemon by Externalizing the AuthorizationRef

Recommended Usage of
Authorization API (Tool)

* Call CreateFromExternal to obtain the
AuthorizationRef passed in by the application

* Use CopyRights to determine whether the
right needed has been granted

* Perform the requested operation(s)
(if permitted by CopyRights)

Preauthorization

* Application may preauthorize for the
rights needed

* The tool performing the operation should call
CopyRights again without the preauthorize flag

* Keep the final call to CopyRights as close as
possible to the operation

* Allows addition of audit logging

* Allows for zero length timeouts or
removable tokens

Temporary Solution for
Third-Party Installers

* AuthorizationExecuteWithPrivileges
* Right required:

. system.privilege.admin

Examples of How to Not
Use Authorization Services

* Do not run commands from BSD or shell scripts
and never call system() OI' popen()

* Do not run your entire Application as root

* Do not rely on credentials being shared or
timeouts being greater than 0

Examples of How to
Use Authorization Services

* When using AuthorizationExecWithPrivileges()
call it at most once

* Test with the most secure possible
/etc/authorization

* Define rights for user initiated operations,

not for low-level system operations
. system.finder.empty.trash (good)
- system.finder.delete.file (bad)

Most Secure Version of
/etc/authorization Possible

<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN”
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">

<plist version="1.0">

<dict><key/><dict>
<key>group</key><string>admin</string>
<key>shared</key><false/>
<key>timeout</key><integer>0</integer>

</dict></dict></plist>

Demo

Summary

* “Rights” are not capabilities

* Do not run an entire Application with root
privileges, limit this to a small tool

* Create an AuthorizationRef and pass it to the tool

* Keep the privileged tool as small as possible
and audit it

* Do not run commands from BSD or shell scripts
and never call system() Or popen()

Resources

Security
Specifications and SDKS

http://developer.apple.com/macos/security.htmi

CDSA 2.0

Specifications
http:/www.opengroup.org

PC/SC

Specifications
http:/www.pcscworkgroup.com

Roadmap

113 Security: CDSA and Secure Transport civic

Common Data Security Architecture Thurs., 9:00am
114 Security: Certificates in Mac OS X Civic
Using X.509 certificates on Mac OS X Thurs., 10:30am
814 Kerberos in Mac OS X Room C
Learn about Kerberos on Mac OS X Thurs., 5:00pm
FF006 Security Room J1

Give us your feedback on security issues Thurs., 2:00pm

Who to Contact

Craig Keithley

Security and Cryptography Technology Evangelist
keithley@apple.com

’

http://developer.apple.com/wwdc2002/urls.html .

Fdesktop: Mo such file or
[duarte:~] ryonX |s
Desktop Library Mus
Documents Hovies Pi

[duarte:~] ryonX cd /Libr

[duarte:/Library] ryonX
[duarte:/LibraryWehserve
Col-Executables

Craig Keithley

Security and Cryptography Technology Evangelist
keithley@apple.com

http://developer.apple.com/wwdc2002/urls.html

& WWDC2002

& WWDC2002

& WWDC2002

